Extensions 1→N→G→Q→1 with N=C32 and Q=C3xD5

Direct product G=NxQ with N=C32 and Q=C3xD5
dρLabelID
D5xC33135D5xC3^3270,23

Semidirect products G=N:Q with N=C32 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
C32:(C3xD5) = He3:D5φ: C3xD5/C5C6 ⊆ Aut C32456+C3^2:(C3xD5)270,14
C32:2(C3xD5) = D5xHe3φ: C3xD5/D5C3 ⊆ Aut C32456C3^2:2(C3xD5)270,6
C32:3(C3xD5) = C32xD15φ: C3xD5/C15C2 ⊆ Aut C3290C3^2:3(C3xD5)270,25
C32:4(C3xD5) = C3xC3:D15φ: C3xD5/C15C2 ⊆ Aut C3290C3^2:4(C3xD5)270,27

Non-split extensions G=N.Q with N=C32 and Q=C3xD5
extensionφ:Q→Aut NdρLabelID
C32.(C3xD5) = D5x3- 1+2φ: C3xD5/D5C3 ⊆ Aut C32456C3^2.(C3xD5)270,7
C32.2(C3xD5) = C9xD15φ: C3xD5/C15C2 ⊆ Aut C32902C3^2.2(C3xD5)270,13
C32.3(C3xD5) = D5xC3xC9central extension (φ=1)135C3^2.3(C3xD5)270,5

׿
x
:
Z
F
o
wr
Q
<